\(\int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [558]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 99 \[ \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d} \]

[Out]

2*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(
a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {3917} \[ \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d} \]

[In]

Int[Sec[c + d*x]/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(
1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.95 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.94 \[ \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )}{d \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {a+b \sec (c+d x)}} \]

[In]

Integrate[Sec[c + d*x]/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)
])/(d*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[a + b*Sec[c + d*x]])

Maple [A] (verified)

Time = 7.24 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.15

method result size
default \(-\frac {2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) \sqrt {a +b \sec \left (d x +c \right )}}{d \left (b +a \cos \left (d x +c \right )\right )}\) \(114\)

[In]

int(sec(d*x+c)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/d*(cos(d*x+c)+1)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Elliptic
F(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))

Fricas [F]

\[ \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)/sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\sec {\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)/sqrt(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {1}{\cos \left (c+d\,x\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(1/(cos(c + d*x)*(a + b/cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)*(a + b/cos(c + d*x))^(1/2)), x)